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1 Introduction

This short note complements the computer lab on hybridizable discontinuous Galerkin for
the approximation of the Oseen flow and is the natural follow-up of the previous sessions.
The associated academic Matlab code solves problems in two dimensions using meshes
based on triangular elements. This lab session is devoted to the experimental analysis of
the role of the stabilization parameter in problems featuring advection phenomena. For a
general analysis of HDG for Oseen flow, the interested reader is referred to [1].

2 Problem statement

Let Ω ⊂ Rnsd be an open bounded domain with boundary ∂Ω. The strong form of the steady
Oseen equation with non-homogeneous Dirichlet boundary conditions reads as follows:

−∇ · (K∇u− u⊗ a− pInsd) = s in Ω,

∇ · u = 0 in Ω,

u = uD on ∂Ω,

(1)

where the couple (u, p) represents the velocity and pressure fields associated with the
problem, K = νInsd , ν > 0 is the viscosity matrix, a a divergence-free advection field and
s and uD respectively are the volumetric source term and the Dirichlet boundary datum
to impose the value of the velocity on ∂Ω. Remark that owing to the purely Dirichlet
boundary condition, the pressure in (1) is determined up to a constant. Hence, the following
additional constraint enforcing zero mean value of the pressure field is introduced:∫

∂Ω

p dΓ = 0. (2)

Assume that Ω is partitioned in nel disjoint subdomains Ωi’s

Ω =
nel⋃
i=1

Ωi, Ωi ∩ Ωj = ∅ for i 6= j, Ωh :=
nel⋃
i=1

Ωi,

whose boundaries ∂Ωi define the internal interface Γ

Γ :=
[ nel⋃
i=1

∂Ωi

]
\ ∂Ω. (3)

Moreover, the jump operator J·K along each portion of the interface Γ is defined as the sum
of the values of the quantity under analysis in the elements Ωi and Ωj respectively on the
left and right sides of the interface (cf. [2]), that is ,

J�K = �i +�j.
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It is important to observe that this definition always requires the normal vector n in the
argument and produces functions in the same space as the argument.

The original strong problem (1) can thus be rewritten equivalently in mixed form on
the broken domain as follows:

L−∇u = 0 in Ωi, and for i = 1, . . . , nel,

−∇ ·
(
K L− u⊗ a− pInsd

)
= s in Ωi, and for i = 1, . . . , nel,

∇ · u = 0 in Ωi, and for i = 1, . . . , nel,

u = uD on ∂Ω,

Ju⊗ nK = 0 on Γ,

J−
(
K L

)
n +

(
u⊗ a

)
n + pnK = 0 on Γ.

(4)

where last two equations - also known as transmission conditions - enforce the continuity
of respectively the primal variable and the normal trace of the flux across the interface Γ.
In order for pressure to be uniquely defined, (4) is coupled again with the constraint (2).

3 The hybridizable discontinuous Galerkin (HDG) for-

mulation

The hybridizable discontinuous Galerkin method was first introduced in [3]. In this section,
the method is used to approximate the Oseen equation [1]. First, following the notation
in [4], the discrete functional spaces are introduced:

Vh(Ω) := {v ∈ L2(Ω) : v|Ωi
∈ Pki(Ωi) ∀Ωi , i = 1, . . . , nel},

Mh(S) := {v̂ ∈ L2(S) : v̂|Γi
∈ Pki(Γi) ∀Γi ⊂ S ⊆ Γ ∪ ∂Ω},

where Pki(Ωi) and Pki(Γi) stand for the spaces of polynomial functions of complete degree
at most ki respectively in Ωi and on Γi. Moreover, recall the notation (p, q)V :=

∫
V
pq dΩ

and 〈p, q〉S :=
∫
S
pq dΓ for the classical internal products in L2(V ), V ⊆ Ω and L2(S), S ⊆

Γ.
The hybridizable discontinuous Galerkin formulation of the Oseen equation introduced in
section 2 is composed by nel local problems defined on the interior of the elements Ωi’s
and a global problem set on the internal skeleton Γ. In the following subsections, the
aforementioned problems will be detailed.

3.1 HDG local problems

The local problems determine (ui,Li, pi) for each element Ωi, i = 1, . . . nel as functions of a
new variable û defined along the interface Γ and acting as a Dirichlet boundary condition,
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namely 

Li −∇ui = 0 in Ωi,

−∇ ·
(
K Li − ui ⊗ a− piInsd

)
= s in Ωi,

∇ · ui = 0 in Ωi,

ui = uD on ∂Ωi ∩ ∂Ω,

ui = û on ∂Ωi \ ∂Ω,

(5)

Henceforth, assume that the hybrid variable û is defined on both the internal skeleton Γ
and the external boundary ∂Ω. More precisely, let û = uD on ∂Ω. It follows that the
boundary conditions in (5) may be rewritten simply as

ui = û on ∂Ωi. (6)

By multiplying the first three equations in (5) by test functions belonging to appropriate
functional spaces and integrating by parts, the following weak form of the local problems
is derived. For i = 1, . . . nel, seek (uhi ,L

h
i , p

h
i ) ∈ [Vh(Ωi)]

nsd × [Vh(Ωi)]
nsd×nsd × Vh(Ωi) such

that for all (w,G, q) ∈ [Vh(Ωi)]
nsd × [Vh(Ωi)]

nsd×nsd × Vh(Ωi) it holds

(G,Lh
i )Ωi

+ (∇ ·G,uhi )Ωi
= 〈Gni, û

h〉∂Ωi
, (7a)

−(w,∇ · (K Lh
i ))Ωi

+ (w,Lh
i a)Ωi

+(w,∇phi )Ωi

+ 〈w, τiuhi 〉∂Ωi
= (w, s)Ωi

+ 〈w, τiûh〉∂Ωi

, (7b)

(∇q,uhi )Ωi
= 〈q, ûh · ni〉∂Ωi

, (7c)

〈1, phi 〉∂Ωi
= ρi, (7d)

where the trace of the numerical flux is defined element-by-element as

̂(
−K Lh

i + uhi ⊗ a + phi Insd
)
ni = −

(
K Lh

i

)
ni +

(
uhi ⊗ a

)
ni + phini + τi(u

h
i − ûh). (8)

Remark that the momentum equation (7b) has been integrated twice in order to make the
flux associated with the operator (first three terms on the right-hand side of (8)) vanish
by leaving solely the stabilization term 〈w, τi(uhi − ûh)〉∂Ωi

. Moreover, in order to account
the purely Dirichlet boundary conditions (6) applied on the local problem, the constraint
(7d) has been introduced.

The stabilization parameter τi plays a crucial role in the accuracy and convergence of
the HDG method (cf. e.g. [1, 5, 6]) and may assume different values on each face of the
boundary ∂Ωi. Its role in the HDG approximation of the Oseen flow is the main subject
of this lab session and will be investigated via experimental analysis.

3.2 HDG global problem

As previously mentioned, the hybrid variable ûh introduced in (7) is the unknown of a
global problem which accounts for the transmission conditions in (4): seek ûh ∈ [Mh(Γ ∪
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∂Ω)]nsd such that ûh = uD on ∂Ω and for all v̂ ∈ [Mh(Γ ∪ ∂Ω)]nsd it holds

nel∑
i=1

{
−〈v̂,

(
K Lh

i

)
ni〉∂Ωi\∂Ω + 〈v̂,

(
ûh⊗a

)
ni〉∂Ωi∩Γ + 〈v̂, phini〉∂Ωi\∂Ω

+ 〈v̂, τi uhi 〉∂Ωi\∂Ω − 〈v̂, τi ûh〉∂Ωi\∂Ω

}
= 0

, (9a)

〈1, ûh · ni〉∂Ωi
= 0 for i = 1, . . . , nel (9b)

The local problems (7) featuring purely Dirichlet boundary conditions, pressure is known
up to a constant. In order to impose an additional constraint, equation (7d) sets the
mean value of phi on the boundary of all elements Ωi’s, for i = 1, . . . , nel. Thus, the
compatibility condition (9b) to weakly enforce a divergence-free velocity field on each
element is introduced.

3.3 Local post-process of the velocity field

By solving an additional problem element-by-element, a post-processed velocity field may
be computed. More precisely, when using an approximation based on polynomials of order
k, the optimal order of convergence k + 1 of the gradient of the velocity L is exploited to
obtain a velocity field u∗ superconvenverging with order k+2. The idea of post-processing
the velocity field was first proposed in [7] and stems from the BDM-projection used in mixed
methods [8, 9] to obtain optimal order of convergence for the flux. The post-processed
velocity is obtained by solving the following problem in each element:{

∇ ·
(
∇u∗i

)
= ∇ · Lh

i in Ωi,(
∇u∗i

)
ni = Lh

ini on ∂Ωi,
(10)

with the additional constraint∫
Ωi

u∗i dΩ =

∫
Ωi

uhi dΩ for i = 1, . . . , nel. (11)

Henceforth, to simplify the notation the superindex h expressing the discrete approxima-
tions and the subindex i indicating the element will be dropped, unless needed in order to
follow the development.

3.4 Assembly of the matrices

Consider an element-by-element nodal interpolation for the spatial unknown functions
defined as

û(x) ≈ ûh(x) =
nfn∑
j=1

N̂j(x) ûj ∈ [Mh(Γ ∪ ∂Ω)]nsd , (12a)

5



u(x) ≈ uh(x) =
nen∑
j=1

Nj(x) uj ∈ [Vh(Ωh)]nsd , (12b)

L(x) ≈ Lh(x) =
nen∑
j=1

Nj(x) Lj ∈ [Vh(Ωh)]nsd×nsd , (12c)

p(x) ≈ ph(x) =
nen∑
j=1

Nj(x) pj ∈ Vh(Ωh), (12d)

(12e)

where ûj, uj, Lj and pj are nodal values, Nj are polynomial shape functions of order k in

each element, nen is the number of nodes per element, N̂j are the polynomial shape functions
of order k on each element face/edge, and nfn is the corresponding number of nodes per
face/edge. Hence, the vectors u, L and p are defined for each element i = 1, . . . , nel and
are respectively of dimension nennsd, nenn

2
sd and nen. The vector û is defined globally over

the skeleton of the mesh and its dimension corresponds to the number of nodes on Γ∪ ∂Ω.
More precisely,

dim(û) =
nef∑
k=1

nkfn,

where nef is the number of element faces/edges of the mesh skeleton Γ ∪ ∂Ω and nkfn
is the number of nodes on the k-th face. Remark that owing to the boundary condition
ûh = uD on ∂Ω, solely the nodes belonging to Γ are unknowns of the previously introduced
global problem.

Algebraic system arising from the local problem

The matrix formulation of the local problem (7) for each element Ωi for i = 1, . . . , nel reads
as follows: 

Auu AuL Aup 0
ALu ALL 0 0
Apu 0 0 AT

ρp

0 0 Aρp 0


i


u
L
p
λ


i

=


fu
fL
fp
0


i

+


Auû

ALû

Apû

0


i

ûi +


0
0
0
1


i

ρi (13)

where a Lagrange multiplier λ has been introduced to handle the additional constraint to
enforce uniqueness of the pressure field and the matrix Aρp arises from the left-hand side
of equation (7d). Remark that the variable ρi features solely one degree of freedom per
element.
The local block matrices A� are computed exploiting the interpolation framework discussed
above and the corresponding forms a� in appendix A.
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Algebraic system arising from the global problem

Similarly, the following algebraic formulation may be derived for the global problem (9):

nel∑
i=1

{[
Aûu AûL Aûp

]
i


u
L
p


i

+
[
Aûû

]
i
ûi

}
= 0 (14)

where the block matrices are computed as mentioned above starting from the forms dis-
cussed in appendix A.

By computing the inverse of the matrix in (13), the solution {u,L,p, λ}Ti may be
written as a function of ûi. By introducing a restriction operator R that neglects the last
line associated with the Lagrange multiplier and by plugging the resulting vector {u,L,p}Ti
into (14), the following global problem is derived

Âûûû + Âûρρ = f̂û (15)

where

Âûû = Anel

i=1

[
Aûu AûL Aûp

]
i
R




Auu AuL Aup 0
ALu ALL 0 0
Apu 0 0 AT

ρp

0 0 Aρp 0


−1

i


Auû

ALû

Apû

0


i

+
[
Aûû

]
i
,

Âûρ = Anel

i=1

[
Aûu AûL Aûp

]
i
R




Auu AuL Aup 0
ALu ALL 0 0
Apu 0 0 AT

ρp

0 0 Aρp 0


−1

i


0
0
0
1


i

 ,

f̂û = −Anel

i=1

[
Aûu AûL Aûp

]
i
R




Auu AuL Aup 0
ALu ALL 0 0
Apu 0 0 AT

ρp

0 0 Aρp 0


−1

i


fu
fL
fp
0


i

 .

Accounting for the global purely Dirichlet boundary condition

The compatibility condition (9b) may be rewritten as

Âρûû = 0, (16)

where Âρû is the matrix associated with the bilinear form on the left-hand side of (9b).
The final algebraic global system is obtained from (15) and (16):[

Âûû Âûρ

Âρû 0

]{
û
ρ

}
=

{
f̂û
0

}
, (17)

whose unknowns are the the trace of the velocity û defined on the mesh skeleton Γ ∪ ∂Ω
and the mean boundary pressures ρ defined in all the elements.
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4 Exercise: the Kovasznay flow [oseen/ex 2]

Let Ω ⊂ R2 be the square domain [−1, 1]× [−1, 1] and consider the analytical solution of
the incompressible Navier-Stokes equations known as Kovasznay flow [10]:

u1 = 1− eλ(x+1) cos
(

2π
(
y +

1

2

))
,

u2 =
λ

2π
eλ(x+1) sin

(
2π
(
y +

1

2

))
,

p = −1

2
e2λ(x+1) + C,

where λ := 1/(2ν) −
√

1/(4ν2) + 4π2 and C is a constant such that the exact pressure
has zero mean value on the boundary ∂Ω. By setting the advection field a equal to the
analytical solution u and by computing appropriately the Dirichlet boundary datum uD
and the source term s, the Kovasznay flow is also a solution of the Oseen equation.

Diffusion-dominated and advection-dominated regimes Solve the Oseen equation
for ν = 10−1 and ν = 10−4 by considering a stabilization term constant on each face Γi of
the triangulation. More precisely, set τi = τ

(1)
i := ν/`, ` being a characteristic length of

the domain. Repeat the experiments by setting τi = 10κν/`, with κ = 1, . . . , 3.

Incorporating the advection information into the stabilization term Implement
the following two expressions of the stabilization parameter constant on each face Γi:

τ
(2)
i :=

ν

`
+

1

2
max
x∈Γi

∣∣a(x) · n
∣∣, τ

(3)
i :=

ν

`
+

1

2
max
x∈Γi

{
a(x) · n, 0

}
Optimal order of convergence and superconvergence of the post-processed ve-
locity Recall that for a polynomial approximation of order k, the optimal order of conver-
gence for velocity is k+1 and the one for the post-processed velocity is k+2. Verify exper-
imentally the order of convergence of the velocity for ν = 10−1 and ν = 10−4 for different
meshes mesh2 P,. . . ,mesh5 P and for different order of approximation degree = 1, . . . , 5.
Compare the results obtained using different expressions of the stabilization parameter.

A Bilinear and linear forms

Forms used in the HDG global problem (14):

aûu(v̂,u):=〈v̂, τiui〉∂Ωi\∂Ω, aûL(v̂,L):=− 〈v̂,
(
KLi

)
ni〉∂Ωi\∂Ω,

aûp(v̂, p):=〈v̂, pini〉∂Ωi\∂Ω, aûû(v̂, û):=〈v̂,
(
û⊗ a

)
ni〉∂Ωi∩Γ − 〈v̂, τiû〉∂Ωi\∂Ω.
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Forms used in the HDG local problem (13):

auu(w,u):=〈w, τiui〉∂Ωi
, auL(w,L):=−

(
w,∇ ·

(
KLi

))
Ωi

+
(
w,Lia

)
Ωi

aup(w, p):=
(
w,∇pi

)
Ωi

auû(w, û):=〈w, τiû〉∂Ωi
,

aLL(G,L):=
(
G,Li

)
Ωi
, aLu(G,u):=

(
∇ ·G,ui

)
Ωi
,

aLû(G, û):=〈Gni, û〉∂Ωi
, apu(q,u):=

(
∇q,ui

)
Ωi
,

apû(q, û):=〈q, û · ni〉∂Ωi
, fu(w):=

(
w, s

)
Ωi
.
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